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The time series of the amplitude of hydrodynamic solitons have been measured and investigated in a
Faraday experiment. The Lyapunov exponent spectra prove that the soliton waves always evolve with chaotic
behavior. The distributions of the exponents over the plane of the driving parameters show that large exponents
correspond to small stability of solitary waves. The experimental results also predict that there may exist some
chaotic equations in the high order reductions of the fundamental hydrodynamical equations together with the
integrable nonlinear Schro¨dinger equation in low order.@S1063-651X~96!09405-5#

PACS number~s!: 47.35.1i, 43.25.1y, 05.45.1b

I. INTRODUCTION

During the last decade the investigation of the nonlinear
dynamics in Faraday experiments@1# has proved to be ex-
tremely fruitful for understanding nonlinear systems in gen-
eral. Many experimental systems and theoretical models in
water @2#, in lattices@3#, and even in granular materials@4#
have been of fundamental importance for achievements in
these fields. The theoretical work@5,6,3# on this topic is done
in the frame of integrable systems, such as the cubic nonlin-
ear Schro¨dinger ~NLS! equations@7#. At the same time,
much progress has been made concerning another kind of
nonlinear phenomena, say, chaos. Chaos is a state in which a
nonlinear dynamical system exhibits bounded motion with
exponential sensitivity to initial conditions, in that initially
neighboring states of a chaotic system diverge exponentially
~on average! as the system evolves forward in time@8#. A
number of chaotic time series from both the experiments and
numerical procedures have been investigated in various
fields. A great deal of attention, however, has been focused
only on either the integrable approach or the unintegrable
approach, with two quite different methods. Fortunately, one
has also found the transition from integrable systems to
chaos in experimental observations@9# and mathematical
theories@10,11#. Recently, a Faraday experiment on water in
a small rectangular tank shows that nonpropagating hydro-
dynamic solitons manifest a chaotic behavior when subjected
to a periodically modulated excitation@12#. In this paper, we
report the careful measurement of 19 time series of hydro-
dynamic soliton amplitudes, and prove that a spatially soli-
tary modulation evolves with chaotic behavior in a Faraday
experiment on water subjected to a simple harmonic~sinu-
soidal! excitation by using the method of the Lyapunov ex-
ponent spectrum.

II. EXPERIMENTAL SETUP AND MEASUREMENT

The experimental apparatus depicted in Fig. 1 consists of
two parts, the vibrating part and the measuring one. In the
former the exciter~Brüel & Kjaer 4812! is driven by a sinu-

soidal voltage generated and amplified by the exciter control
~Brüel & Kjaer 1050! and the power amplifier~Brüel &
Kjaer 2707!, respectively. A rectangular waveguide is at-
tached on the aluminum table of the exciter. The motion of
the table is measured and controlled by the exciter control
according to the signal detected by an accelerometer~Brüel
& Kjaer 4393! fixed at the table. All motion signals are pure
enough to neglect the effect of the harmonics on the results;
for example, the second harmonic is 40 dB lower than the
fundamental. The data of the wave forms are generated by a
transducer consisting of a pair of parallel thin metal probes
with 1 mm separation. To prevent errors caused by the elec-
trolysis of water, we connect two probes to a source of 20
kHz and 10 V through a resistor. The modulating voltage
across the resistor is fed to a lock-in analyzer~EG&G 2504!
for demodulation and amplification, then to a data acquisi-
tion and control unit~HP 3852A! for acquisition, and finally
to a controlling computer for storage, and then proceeds
through the Hewlett-Packard Interface Bus. As the probes
are put into water with weak electrical conductivity, the elec-
trical resistance or modulated voltage for a current flow
through the resistor will be approximately proportional to the
height of the surface wave. The experimental results are also
recorded by both a video and a photographic camera. The
waveguide used is 29.8 mm in width and 198 mm in length
and is filled by water up to a depth of 18 mm.

Under a suitable excitation of frequency 2f e and ampli-
tudeAe , a nonpropagating hydrodynamical soliton~breather!

*Mailing address. FIG. 1. The scheme of the experimental apparatus.
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in the ~0,1! mode can be formed and then becomes robust
@2#. We fix the transducer just at the position of the soliton
peak~antinode! and set the data acquisition in the state of the
voltage scan for a single channel with the interval 0.002 sec,
about 100 data points each period of the~0,1! mode. For
every one of 19 sets of 2f e andAe , the acquisition proce-
dure lasts about 20 sec, say, 10 000 points. Finally, we obtain
in total 19 experimental time series of 190 000 data points.

III. LYAPUNOV EXPONENTS

Lyapunov exponents are the average exponential rates of
divergence or convergence of nearby orbits in phase space
and they are fundamental indicators of chaos. Positive expo-
nents mean the divergence of nearby orbits in phase space;
moreover, the more positive the exponents, the higher the
orbit divergence. The theoretical method for the calculation
of the Lyapunov exponents, however, cannot usually be ap-
plied to experimental data directly. Fortunately, Wolfet al.
@13# and Holzfuss and Lauterborn@14# have developed their
algorithms for the Lyapunov exponents from an experimen-
tal time series. The method described by Holzfuss and Lau-
terborn not only can be applied directly to calculate the ex-
ponents but also avoids the effect of spurious exponents,
which are more negative than the most negative true expo-
nent because the true exponents indeed converge to their
asymptotic values with the increase of the embedding dimen-
sion.

In the method of calculation of Ref.@14#, the Lyapunov
exponents are expressed by
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whereYi ( i51,...,N) areN difference vectors in a sphere
with a small radiuse centered at the phase point at timet. Zi

( i51,...,N) are the map vectors ofYi ( i51,...,N) after an
evolution timeDt. Before calculating the exponents we re-
construct the signal time series inton-dimensional time se-
ries by using the time delaytd510ts with ts being the sam-
pling time, 0.002 sec here. In the calculation we choose the
evolution time Dt510ts , and the radius e of the
n-dimensional sphere needed for the approximation of the
matrixAj is kept as small as possible, and is enlarged when-

ever the number of data pointsN inside a sphere is less than
n12 or a singularity arises in the procedure ofQR decom-
position.

Figure 2 shows the Lyapunov exponents for matrix di-
mensions from 3 to 9. The driving frequency 2f e and the
amplitudeAe are~a! 9.3 Hz and 0.75 mm, and~b! 9.1 Hz and
1.00 mm, respectively. With increasing matrix dimension the
largest exponents converge to their asymptotic values of~a!
l152.5 bits/sec and~b! l154.2 bits/sec, and the second larg-
est ones reach~a! l251.2 bits/sec and~b! l252.7 bits/sec,
respectively.

The Lyapunov exponent spectra show that the amplitudes
of the waves in the Faraday experiment evolve with chaotic
behavior though the spatial modulation is solitary in the lon-
gitudinal direction of the waveguide. Furthermore, the calcu-
lations for 17 other sets of driving parameters confirm the
conclusions above. Figure 3 shows the projections of the
data of Fig. 2 in a two-dimensional subspace of the eight-
dimensional reconstructed space. Comparing Figs. 3~a! and
3~b!, we can see that time series with small positive expo-
nents correspond to a slight dispersion of the strange attrac-
tor, and vice versa.

FIG. 2. The Lyapunov exponent spectra vs the matrix dimen-
sion. The driving parameters are~a! 2 f e59.3 Hz andAe50.75 mm,
~b! 2 f e59.1 Hz andAe51.00 mm.
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IV. STABILITY REGION

For a given waveguide of widthb filled with water up to
depth d, the nonpropagating hydrodynamic soliton in the
Faraday experiment only exists permanently in a certain re-
gion in the two-dimensional plane of driving parameters 2f e
and Ae . This region in the parametric plane is called the
stability region of the soliton@9#. The experiment@2# showed
that the soliton appeared only atf e, f 0 with f 0 being the
~0,1! modal eigenfrequency of water in the waveguide. We
also find that the stability region of a soliton pair with phase
mismatch may overlap partially with that of the single soli-
ton. The driving amplitude for a soliton pair, of course, is
usually larger than that for a~single! soliton. Figure 4 shows
the stability region for a soliton,S1, and a soliton pair with
phase mismatch,S2. The 19 sets of parameters for which we
measure the time series, of course, are located inS1, that is,
Ae50.75, 0.875, and 1.00 mm at 6–7 frequencies from 8.80
to 10.00 Hz~see the circles in Fig. 4!. The first and second
largest Lyapunov exponents in the eight-dimensional recon-
structed space are plotted as functions of these driving pa-
rameters in Figs. 5~a! and 5~b!, respectively. Although the

number of data sets is still not enough to draw three-
dimensional surfaces of the Lyapunov exponents over the
parametric plane, we can also conclude the following.~i! The
chaotic evolution of the solitary wave always exists every-
where in the stability region.~ii ! For both small and large
driving amplitudes, say,Ae50.750 and 1.00 mm,l1 andl2
decrease at the central frequencies and increase near the low
frequency margin through which the~0,1! modal solitons
disappear, but similar peaks seem not to occur on the high
frequency margin through which the~0,1! modal solitons are
replaced by other~0,1! modal solitons, namely, soliton pairs.
~iii ! ForAe50.875 mm the relationship betweenl’s and 2f e
is not clear.

Based on the phenomena mentioned above, the chaotic
behaviors of solitons are related to deviation from the~0,1!
modal wave motion instead of solitary motion. In other
words, the Lyapunov exponents represent the degree of
mode competition rather than the competition between the
single soliton and soliton pair. The~0,1! modal soliton, of
course, cannot exist if the~0,1! modal waves disappear.
Therefore the Lyapunov exponents we calculated also denote
the stability of the~0,1! modal soliton in this meaning. The
smaller the exponents, the greater the stability of the~0,1!
modal soliton.

On the other hand, the wave forms of the hydrodynamic
solitons are also related to the Lyapunov exponents. Figures
6~a! and 6~b! show the experimental photographs for the
small and large Lyapunov exponents of Figs. 2~a! and 2~b!,
respectively. It is easy to see that the solitary modulation in
the horizontal direction has been distorted so seriously that
the sectional curve lacks smoothness for a large exponent
@see Fig. 6~b!#, which further confirms the concluded relation
between the exponents and the~0,1! modal stability.

V. ANALYSIS AND DISCUSSION

Since the nonpropagating hydrodynamic soliton was first
discovered in 1984@2#, Larraza and Putterman@5# and Miles
@6# have published their theories of the nonlinear surface
waves of liquids. The surface displacementz5h(x,y,t) with
x, y, and z axes being parallel to the length, width, and
height directions of the rectangular waveguide, was obtained
by perturbation methods. Usually, only the first-order ap-
proximation ofh could be explicitly expressed as

FIG. 3. The two-dimensional
projections of the eight-
dimensional embedding attractors
with time delay 0.02 sec.~a! A
weak chaos~the largest Lyapunov
exponentl152.5 bits/sec!; ~b! a
strong chaos~l154.2 bits/sec!.
The driving parameters are the
same as those in Figs. 2~a! and
2~b!, respectively.

FIG. 4. The stability regions of the~0,1! modal solitary waves
for waveguide width 29.5 mm and water depth 18 mm.S1 is the
region for the single soliton,S2 for the soliton pair,N is the still
region, andO for other waves. The dotted curve denotes the margin
betweenS1 andO.
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h~1!5u~x,t !cos~ky!eivt1c.c., ~3!

where c.c. is the complex conjugate, the~0,1! modal wave
number k5p/b, the ~0,1! modal angular frequency
v5@gk tanh(kd)#1/2, and u(x,t) satisfies a NLS equation.
One can explain nonpropagating solitary waves, including
breather solitons and kink solitons, easily in the framework
of theory of the NLS equation. Unfortunately, up to now the
higher order solutions forh still remain unknown. Further-
more, the form of the NLS equation can also be different for
different order estimations of the parameters. On the other
hand, mathematical procedures have shown that some inte-
grable models such as the Korteweg–de Vries~KdV! system
can transform themselves into chaotic systems as some terms
are added to the models@10#. Therefore the phenomena re-
ported here show that there should exist some chaotic equa-

tions among the equations reduced from the fundamental hy-
drodynamic equations with boundary conditions. In other
words, the precise reductions from the fundamental equa-
tions are really worthy of further investigation.

At the same time, the experimental data also provide
some interesting phenomena not yet explained, such as why
the maximum peaks of thel’s are located near the central
frequency zone ofAe51.00 mm.

VI. SUMMARY

In a parametrically excited Faraday experiment, the am-
plitude time series of nonpropagating hydrodynamical soli-
tons have been measured. The Lyapunov exponent spectra of
the reconstructed data show that the solitons evolve with
chaotic behavior. So the observations reported here indicate
that spatial solitary modulation and temporal chaotic evolu-

FIG. 6. Photographs of soliton waves.~a!
Weak chaos;~b! strong chaos. The driving pa-
rameters are the same as those in Figs. 2~a! and
2~b!, respectively.

FIG. 5. The distributions of the Lyapunov ex-
ponents over the driving parameter plane.~a! l1;
~b! l2. The waveguide width is 29.5 mm and
water depth is 18 mm.
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tion can exist in the same physical system. In terms of math-
ematics, both integrable and unintegrable models can be ob-
tained simultaneously by reducing the same fundamental
equations with their boundary conditions. Furthermore, the
relation between the Lyapunov exponents and the stability of
the soliton has been discussed by analyzing the distributions
of the exponents over the driving parameter plane. It has
been concluded that the smaller the exponents, the stronger
the stability of the~0,1! modal waves. The experimental re-
sults predict that there may exist some high order chaotic
solutions of the surface displacement together with the~0,1!
modal soliton in first order. Therefore it is necessary theo-
retically to reduce precisely the fundamental hydrodynamical
equations of water in a waveguide subjected to parametric

excitation. Further experiments on the temporal evolution
behaviors in other solitary waves together with the corre-
sponding theories are worthy of further investigation. We are
now in the process of several experiments for these purposes,
which are very encouraging, and the results will be reported
later.
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